HR Diagram
Correlations to Project 2061 Benchmarks in Science Education
The Project 2061 Benchmarks in Science Education is a report, originally published
in 1993 by the American Association for the Advancement of Science (AAAS), that listed
what students should know about scientific literacy. The report listed facts and concepts
about science and the scientific process that all students should know at different grade
levels.
The report is divided and subdivided into different content areas. Within each subarea,
the report lists benchmarks for students completing grade 2, grade 5, grade 8, and grade 12.
The table below shows which benchmarks are met by which sections of the HR Diagram
project.
The list below shows all Project 2061 benchmarks met by the HR diagram project.
Content headings are listed as Roman numerals, subheadings as letters,
grade levels by numbers, and specific points by numbers after the hyphen.
For example, benchmark IA82 means the second benchmark for eighth grade
students in the first content area, first subarea.
The HR Diagram unit meets the following Project 2061 Benchmarks:
IA121, IC86, IIIB81, IVA81, IVA82, IVA121, IVA123.
IA121. Scientists assume
that the universe is a vast single system in which the basic rules are
the same everywhere. The rules may range from very simple to extremely
complex, but scientists operate on the belief that the rules can be
discovered by careful, systematic study.
IC86. Computers have
become invaluable in science because they speed up and extend people's
ability to collect, store, compile, and analyze data, prepare research
reports, and share data and ideas with investigators all over the
world.
IIIB81. Design usually requires taking constraints into account.
Some constraints, such as gravity or the properties of materials to be
used, are unaviodable. Other constraints, including economic, political,
social, ethical, and aesthetic ones, limit choices.
IVA81. The sun is a
mediumsized star located near the edge of a diskshaped galaxy of
stars, part of which can be seen as a glowing band of light that spans
the sky on a very clear night. The universe contains many billions of
galaxies, and each galaxy contains many billions of stars. To the
naked eye, even the closest of these galaxies is no more than a dim,
fuzzy spot.
IVA82. The sun is many thousands of times closer to the earth than
any other star. Light from the sun takes a few minutes to reach the earth, but light
from the next nearest star takes a few years to arrive. The trip to that star would
take the fastest rocket thousands of years. Some distant galaxies are so far away
that their light takes several billion years to reach the earth. People on earth,
therefore, see them as they were that long ago in the past.
IVA121. The stars differ from each other in size, temperature, and
age, but they appear to be made up of the same elements that are found on
the Earth and to behave according to the same physical principles.
Unlike the sun, most stars are in systems of two or more stars orbiting
around one another.
IVA123. Increasingly sophisticated technology is used to learn about the
universe. Visual, radio, and xray telescopes collect information from across the
entire spectrum of electromagnetic waves; computers handle an avalanche of data and
increasingly complicated computations to interpret them; space probes send back data
and materials from the remote parts of the solar system; and accelerators give
subatomic particles energies that simulate conditions in the stars and in the early
history of the universe before stars formed.
Correlations to NCTM Principles and Standards for School Mathematics
Principles and Standards for School Mathematics was released in 2000 by the
National Council of Teachers of Mathematics. The standards, a collaboration between
education researchers and school mathematics teachers, lists what concepts students
should understand, and what skills they should possess, at different stages of their
mathematics education.
The report is divided and subdivided into ten different content areas. Within the
first six areas, the report lists standards for students completing grade 2, grade 5,
grade 8, and grade 12. The table below shows which standards are met by
the HR Diagram project.
Content headings are listed as Roman
numerals, subheadings as letters, grade levels as numbers, and specific
points by numbers after the hyphen.
For example, standard IA82 means the second standard for eighth grade
students in the first content area, first subarea. Content areas VI through X, which
concern skill processes in mathematics, are not divided into subareas or grade
levels. The standards met by the HR Diagram project are:
IA81, IA84, IA85, IA121, IB121, IC81, IC122, IIA125, IIC81, IIC123, IVA82,
IVA121, IVB124, VA82, VB82, VC82, VC83, VI2, VIII2, IX3, X3.
Standards
Students should be able to:
IA81. Work flexibly with fractions, decimals, and percents to solve problems.
IA84. Understand and use ratios and proportions to represent quantitative
relationships.
IA85. Develop an understanding of large numbers and recognize and
appropriately use exponential, scientific, and calculator notation.
IA121. Develop a deeper understanding of very large and very small numbers
and of various representations of them.
IB121. Judge the effects of such operations as multiplication, division,
and computing powers and roots on the magnitudes of quantities.
IC81. Select appropriate methods and tools for computing with fractions
and decimals from among mental computation, estimation, calculators or computers,
and paper and pencil, depending on the situation, and apply the selected methods.
IC122. Judge the reasonableness of numerical computations and their results.
IIA125. Understand and compare the properties of classes of functions,
including exponential, polynomial, rational, logarithmic, and periodic functions.
IIC81. Model and solve contextualized problems using various
representations, such as graphs, tables, and equations.
IIC123. Draw reasonable conclusions about a situation being modeled.
IVA82. Understand relationships among units and convert from one unit to
another within the same system.
IVA121. Make decisions about units and scales that are appropriate for
problem situations involving measurement.
IVB124. Use unit analysis to check measurement computations.
VA82. Select, create, and use appropriate graphical representations of data,
including histograms, box plots, and scatterplots.
VB82. Discuss and understand the correspondence between data sets and
their graphical representations, especially histograms, stemandleaf plots, box
plots, and scatterplots.
VC82. Make conjectures about possible relationships between two
characteristics of a sample on the basis of scatterplots of the data and
approximate lines of fit.
VC83. Use conjectures to formulate new questions and plan new studies to
answer them.
VI2. Solve problems that arise in mathematics and other contexts.
VIII2. Communicate their mathematical thinking coherently and clearly
to peers, teachers, and others.
IX3. Recognize and apply mathematics in contexts outside of mathematics.
X3. Use representations to model and interpret physical, social, and
mathematical phenomena.
